THE VALUE OF NEUROMONITORING IN THE PRACTICE OF THE INTENSIVE CARE PHYSICIAN

Рубрика конференции: Секция 8. Медицинские науки
DOI статьи: 10.32743/NetherlandsConf.2021.7.9.294411
Библиографическое описание
Venara I., Galym A., Aibek Y., Eldar Zh., Zhasulan Zh., Samrat S., Berikbolsyn A., Nazgul B. THE VALUE OF NEUROMONITORING IN THE PRACTICE OF THE INTENSIVE CARE PHYSICIAN// Proceedings of the IX International Multidisciplinary Conference «Innovations and Tendencies of State-of-Art Science». Mijnbestseller Nederland, Rotterdam, Nederland. 2021. DOI:10.32743/NetherlandsConf.2021.7.9.294411

THE VALUE OF NEUROMONITORING IN THE PRACTICE OF THE INTENSIVE CARE PHYSICIAN

 

Venara Israilova

Head of anesthesiology and reanimatology department, professor Asfendiyarov Kazakh National Medical University,

 Kazakhstan, Almaty

Galym Aitkozhin

Professor of surgical diseases department Asfendiyarov Kazakh National Medical University,

Kazakhstan, Almaty

Aibek Yermekbay

Residents of anesthesiology and reanimatology Asfendiyarov Kazakh National Medical University,

Kazakhstan, Almaty

Eldar Zhumanov

Residents of anesthesiology and reanimatology  Asfendiyarov Kazakh National Medical University,

Kazakhstan, Almaty

Zhasulan Zhanetov

Residents of anesthesiology and reanimatology  Asfendiyarov Kazakh National Medical University,

Kazakhstan, Almaty

Samrat Samat

Residents of anesthesiology and reanimatology  Asfendiyarov Kazakh National Medical University,

Kazakhstan, Almaty

Berikbolsyn Ablamit

Residents of anesthesiology and reanimatology  Asfendiyarov Kazakh National Medical University,

Kazakhstan, Almaty

Nazgul Boltrikova

Residents of anesthesiology and reanimatology  Asfendiyarov Kazakh National Medical University,

Kazakhstan, Almaty

 

Neuromonitoring is considered broadly, including dynamic assessment of neurological status, discrete or continuous use of electrophysiological, biochemical, ultrasound, x-ray, isotope, and other methods. Despite current technological capabilities, dynamic neurological assessment continues to be one of the simplest and most important ways to assess the adequacy of intensive care. Moreover, the data of instrumental methods should always be considered only in comparison with the clinical picture. An increase in the degree of depression of consciousness, the depth of motor and tonic disorders, an increase in the number of symptoms of cranial nerves "loss" indicates the ineffectiveness of therapy. Cerebral-somatic para-infrared oximetry system is designed to assess patients (newborn-child-adults) with suspected cerebral and/or somatic oxygenation disorders even if BP and SpO2 levels remain normal. The rSO2 index provides insight into the balance between oxygen delivery and consumption in the areas under study.

Materials and methods: Cerebral oximetry neuromonitoring was performed in 47 patients with various brain injuries admitted to the intensive care unit of Emergency Hospital of Almaty in 2016.(neurostroke, trauma, neurosurgical department). The results we obtained allow us to speak about high informative value of the method of cerebral oximetry in the study of processes occurring in the brain during general anesthesia and intensive care. The capabilities of this method for diagnostics of cerebral hypoxia appear to be extremely important. Evaluating the capabilities of the spectroscopy method in the near-infrared spectrum, it is hoped that it will find wide application in pediatric anesthesiology. It is obviously advisable to use it for intraoperative monitoring of cerebral oxygen status in cardiovascular surgery, in neurosurgery and in all other cases when the risk of cerebral hypoxia or cerebral perfusion disorders is extremely high.

  1. Cerebral oximetry as part of other neuromonitoring methods is used as a diagnostic tool for secondary brain damage.
  2. Cerebral oximetry in neuromonitoring allows to reveal the correspondence between brain delivery and oxygen consumption, to specify the severity of brain damage, and, as a consequence, the outcome of intracranial hemorrhage.
  3. Cerebral oximetry allows to diagnose cerebral hypoxia, which expands indications for use of artificial pulmonary ventilation, optimizes its parameters and duration.
  4. Neuromonitoring with cerebral oximetry allows to provide safe use of sympathomimetics in order to maintain adequate cerebral perfusion.
  5. Cerebral oximetry allows monitoring oxygen delivery to the brain of patients with intracranial hemorrhages during various medical manipulations that ensure airway patency, thus reducing episodes of cerebral hypoxia.
  6. Limitations in the use of cerebral oximetry are related to the type of pathological process, since the method reflects the regional oxygenation of the brain area. Cerebral oximetry is inexpedient if the pathology is localized in the posterior cranial fossa and brainstem The use of cerebral oximetry is low-informative in ruptured arterial aneurysms.

Invos is included in the standards for neuromonitoring in the United States, Western Europe, and Russia. Also, the cerebral-somatic oximeter can be used as an additional monitor to indicate Hb oxygen saturation in the skeletal musculature of patients at risk of ischemic conditions caused by decreased or absent blood flow. The measurements performed are direct, continuous, non-invasive, indicating the degree of oxygenation of the CNS and various examined areas of the patient's body. Area of application: vascular surgery - during surgical restoration (stent placement) of impaired blood supply in case of thrombosis of the left and right carotid arteries (a. carotis), as well as in surgical interventions on any large regional arteries; cardiac surgery - to assess the degree of hypoxic intraoperative cortical lesions, especially - when using AIC; in ICU for recovery from shock conditions of any etiology; in treatment of stroke in neurological patients; in neonatology while monitoring the treatment dynamics of various hypoxic cortical lesions in newborns, including premature babies; in any field of surgery and neurosurgery, which require parallel assessment of blood supply to the cerebral cortex and the regional blood supply.

Conclusion. Modern neuromonitoring has great potential to provide monitoring of the brain state and its safety and contributes to anesthesia at a higher level during surgical interventions and intensive care with possible brain damage in both adults and children.

 

References:

  1. Лубнин А. Ю., Шмигельский А. В. Церебральная оксиметрия. // Анест. и реаниматол., 1996, № 2, С. 85-90.
  2. Лубнин А. Ю., Шмигельский А. В., Лукьянов В. И. Применение церебральной оксиметрии для ранней диагностики церебральной ишемии у нейрохирургических больных с сосудистой патологией головного мозга. // Анест. и реаниматол., 1996, № 2, С. 55-59.
  3. Лубнин А. Ю., Шмигельский А. В., Островский А.Ю. Церебральный оксиметр INVOS-3100. // Анест. и реаниматол., 1995, № 4, С. 68-70.
  4. Миербеков Е. М., Флёров Е. В., Дементьева И. И. и др. Фиброоптическая оксигемометрия крови верхней луковицы внутренней ярёмной вены при кардиохирургических вмешательствах. // Анест. и реаниматол., 1997, № 1, С. 35-38.
  5. Русина О. В. Использование CRITICON Cerebral RedOx для церебральной оксиметрии. // Анест. и реаниматол., 1997, № 1, С. 69-71.
  6. Храпов К. Н., Щеголев А. В., Свистов Д. В., Бараненко Д. М. Влияние некоторых методов общей анестезии на мозговой кровоток и цереброваскулярную реактивность по данным транскраниальной допплерографии. // Анест. и реаниматол., 1998, № 2, С. 40-43.
  7. Царенко С. В., Крылов В. В., Тюрин Д. Н., Лазарев В. В. и др. Церебральная оксиметрия в параинфракрасном диапазоне. Возможности использования в нейрореанимационном отделении. // Анест. и реаниматол., 1998, № 4, С. 68-70.
  8. Amory D., Li J., Wang T., Asinas R., Kalatzis M. S. Noninvasive, continuous assessment of cerebral oxygenation using near infrared spectroscopy. // 1992, Anesthesiology, 77:3A.
  9. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurements. // Lancet, 1986, 2:307-310.
  10. Brazy J. E., Lewis D. V., Mitnick M. J., Jobsis-Vander Vliet F. F. Non-invasive monitoring of cerebral oxygenation in preterm infants: Preliminary observation. // Pediatrics, 1985, 75:217-225.
  11. Brazy J. E., Lewis D. V. Changes in cerebral volume and cytochrome aa3 hypertensive peaks in preterm infants. // J. Pediatr., 1986, 108:983-987.
  12. Crohin C. C., Zelman V., Loskota W., Bayat A. Brain protection during deep hypothermic cardiac arrest (DHCA). // European Congress of Anaesthesiology, 9-th: Proceedings. Jerusalem, 1994, p. 32.
  13. Edvards A. D., Wyatt J. S., Richardson C., Delpy D. T., Cope M., Reynolds E. O. R. Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy. // Lancet, 1988, 2:770-771.
  14. Fallon P., Roberts I., Kirkham F. J., Elliott M. J., Lloyd-Thomas A., Maynard R., Edwards A. D. Cerebral hemodynamics during cardiopulmonary bypass in children using near infrared spectroscopy. // Ann. Thorac. Surg., 1993, 56:1473-1477.
  15. Greisen G. Cerebral blood flow in mechanically ventilated preterm neonates. // Dan. Med. Bull., 1990, 2:124-132.
  16. Greisen G. Cerebral blood flow in preterm infants during the first week of life. // Acta Paediatr. Scand., 1986, 75:43-51.
  17. Harris D. N. F., Smith P. L. S., Taylor K. M. Cerebral oxygenation during cardiopulmonary bypass using near infrared spectroscopy. // Pathophysiology & Techniques of Cardiopulmonary Bypass, San Diego, 1994, p. 262.
  18. Jaggi J. L., Lipp A. E., Duc G. Measurement of cerebral blood flow with a noninvasive 133Xenon method in preterm infants. In: Stern L., Friis-Hansen B. (eds) Physiological Foundations of Perinatal Care. Elsevier. Amsterdam. 1989, pp. 233-242.
  19. Jobsis F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. // Science, 1977, 198:1264-1267.
  20. Jobsis van der Vliet F. F. Non-invasive, near infrared monitoring of cellular oxygen sufficiency in vivo. // Adv. Exp. Med. Biol., 1986, 191:833-846.
  21. Jobsis van der Vliet F. F., Piantadosi C. A., Sylvia A. L., Lucas S. K., Keiser H. H. Near infrared monitoring of cerebral oxygen sufficiency. 1. Spectra of cytochrome c oxydase. Neurol. Res., 1988, 10:7-17.
  22. Mason P. F., Dyson E. H., Sellars V., Beard J. D. The assessment of cerebral oxygenation during carotid endarterectomy utilising near infrared spectroscopy // Eur. J. Vasc. Surg., 1994, V. 8; 5:590-595.
  23. McCormick P. W. Monitoring cerebral oxygen delivery and haemodynamics. // Curr. Opin. Anaesthesiol., 1991, 4:639-644.
  24. McCormick P. W., Stewart M., Goetting M. G., Balaktushnan L. Regional cerebrovascular oxygen saturation measured by optical spectroscopy in humans. // Stroke, 1991, 22:596-602.
  25. Naylor A. R., Wildsmith J. A. W., McClure J. et al. Transcranial Doppler monitoring during carotid endarterectomy. // Br. J. Surg., 1991, 78:1264-1268.
  26. Obrist W. D., Wilkinson W. E. Regional cerebral blood measurements in humans by 133Xe clearance. // Cerebrovasc. Brain. Metab. Rev., 1990, 2:283-327.
  27. Pryds O., Greisen G., Skov L., Friis-Hansen B. Carbon dioxide-related changes in cerebral blood flow in mechanically ventilated preterm neonates. Comparison of near infrared spectrophotometry and 133Xe clearance. // Pediatr. Res., 1990, 27:445-449.
  28. Reynolds E. O. R., Wyatt J. S., Azzopardi D., Delpy D. T., Cady B., Cope M., Wray S. New noninvasive methods for assessing brain oxygenation and haemodynamics. // Brit. Med. Bull., 1988, 1052-1075.
  29. Shenaq S., Shankar P., Safi H., Bayoumi S., Coselli J., Bryan R., Robertson C. Monitoring cerebral oxygenation during hypothermic circulatory arrest using near infrared spectroscopy. // Anesth. Analg. 1994, 78:S390.
  30. Skov L., Pryds O., Greisen G. Estimating cerebral blood flow in newborn infants: Comparison of near infrared spectroscopy and 133Xe clearance. // Ped. Res., 1991, V. 30; 6:570-573.
  31. Sylvia A. L., Piantadosi C. A. O2 dependence of in vivo brain cytochrome redox responses and energy metabolism in bloodless rats. // J. Cereb. Blood Flow, 1988, 8:163-172.
  32. Van der Zee P., Cope M., Arridge S. R., Essenireis M., Potter A., Edwards A. D., Wyatt J. S., McCormick D. C., Roth S. C., Reynolds E. O. R., Delpy D.T. Experimentally measured optical pathlengt for the adult head, cait and forearm and the head of the newborn infant as a function of interoptode spacing. // Adv. Exp. Med. Br., 1992, 316:143-153.
  33. Williams I. M., McCollum C. Cerebral oximetry in carotid endarterectomy and acute stroke. In: Greenhalgh R. M., Hollier L. H., eds. Surgery for Stroke. London; Saunders, 1993, 129-138.
  34. Williams I. M., Picton A. J., Hardy S. C., Mortimer A. J., McCollum C. N. Cerebral hypoxia detected by near infrared spectroscopy // Anaesthesia, 1994, V. 49, 7:762-766.
  35. Wray S., Cope M., Delpy D. T., Wyatt J. S., Reynolds E. O. R. Characterization of near infrared absorption spectra cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. // Biochim. Biophys. Acta, 1988, 933:184-192.
  36. Wyatt J. S., Cope M., Delpy D. T., van der Zee P., Arridge S., Edwards A. D., Wray S., Reynolds E. O. R. Measurement of optical pathlength for cerebral near-infrared spectroscopy in newborn infants. // Dev. Neurosci., 1989, 12:140-144.
  37. Wyatt J. S., Cope M., Delpy D. T., Richardson C. E., Edwards A. D., Wray S., Reynolds E. O. R. Quantification of cerebral blood volume in human infants by near-infrared